

รศ.ดร. อนันต์ ผลเพิ่ม

Asso. Prof. Anan Phonphoem, Ph.D.

anan.p@ku.ac.th

http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand

- Routing Principle
- Routing table calculation
- Routing protocol

Routing Protocol

Distance-vector Routing

Distance-vector Routing

- Distributed route computation
- Router computes the routing table locally
- Each node sends the results to its
 - neighbors periodically
- Each node keeps update its routing table
- Routing by rumor

Configure RIP


```
BHM(config) #router rip
BHM(config-router) #network 10.0.0.0
BHM(config-router) #network 192.168.13.0
```

```
GAD(config) #router rip

GAD(config-router) #network 192.168.14.0

GAD(config-router) #network 192.168.13.0
```

```
BOAZ (config) #router rip
BOAZ (config-router) #network 192.168.14.0
BOAZ (config-router) #network 172.31.0.0
```

Routing Table Example

BOAZ#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area, * - candidate default, U - per-user static route, o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

- R 10.0.0.0/8 [120/2] via 192.168.14.1, 00:00:16, Serial0/0/0
- C 172.31.0.0/16 is directly connected, FastEthernet0/0
- R 192.168.13.0/24 [120/1] via 192.168.14.1, 00:00:16, Serial0/0/0
- C 192.168.14.0/24 is directly connected, Serial0/0/0

RIPv2

- RIPv2 supports
 - CIDR supernets
 - VLSM
 - Discontiguous networks (no auto-summary)
- Improves efficiency by
 - defining multicast address (224.0.0.9) → route update
 - some reserved fields are assigned (RIPv1 sets to zero)
 - Authentication
- Can coexist with RIP v1
 - RIPv2 use multicast must be configurable per interface
 - RIPv2 accept RIPv1 request/response

Distance Vector Summary

Good

- Only need communicate with neighbors (so little bandwidth is wasted on protocol overhead)
- Relatively little processing of info

Bad

- Count to infinity problem
- Slow convergence (the real issue)
- Despite this, RIP is popular
 - Because included in original BSD implementation

Link State Routing

Link State Routing

- Each router is responsible for
 - meeting its neighbors
 - learning their names
- Each router constructs a packet
 - called a Link State Packet (LSP)
 - or Link State Advertisement (LSA)
 - containing a list of names and cost assigned to each neighbor

Router Discovery

Link State Routing

- Each router LSP is sent to <u>all other routers</u> (Reliable Flooding)
- Each router now has a topological map of the network (Link-State Database)
- Apply the Shortest Path First (SPF) algorithm to compute routes to each destination
 - SPF also know as Dijkstra algorithm
 - Link-State algorithms advertise the state of its local network links <u>not distances</u>

Link State Packet (LSP)

- ID of the node that created the LSP
- Cost of the link to each directly connected neighbor
- sequence number (SEQNO)
- time-to-live (TTL) for this packet

Reliable flooding

- store most recent LSP from each node
- forward LSP to all nodes but one that sent it
- generate new LSP periodically
 - increment SEQNO
- start SEQNO at 0 when reboot
- decrement TTL of each stored LSP
 - discard when TTL=0

Flooding

Route Calculation

- Dijkstra's Algorithm
 - Finding the shortest path from a source to other nodes in network
- Weight represents distance between two nodes
- Sum of weights along the path is the total distance
- Choose the lowest total distance

Link State Routing

Dijkstra Algorithm

Topology

1. Set root to A and move A to tentative list

2. Move A to permanent list and add B, C, and D to tentative list

3. Move C to permanent and add E to tentative list

4. Move D to permanent list.

5. Move B to permanent list

6. Move E to permanent list (tentative list is empty)

Routing Table

Dijkstra's Algorithm In action (I)

Japan: http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml

Mathematical Java Applet Demos of Dijkstra's Algorithm **Programming** <u>Simplex</u> Continue clicking on the applet below to find a shortest p Twophase. <u>Dijkstra</u> Prim <u>Kruskal</u> 15 Ford-Fulkerson Dijkstra Java applet demos: 14 demo6

Dijkstra's Algorithm In action (II)

by Carla Laffra of Pace University

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html

Routing Table

Final **R1** Routing Table

Destination	Next Hop	Cost
R2	-	4
R3	R2	10
R4	-	2
R5	R2	6

Network Change

OSPF Routing Protocol

- Link State Protocol
 - Link is connection between two routers
 - Routing table stores > just its hop count: cost, reliability, etc.
 - Allows OSPF routers to optimize routing based on these variables

Autonomous System

OSPF-Autonomous System

OSPF Area

Route between Area

OSPF Routers

- Network is Divided into Areas
 - Each area has a designated router

When a router senses a link state change

Sends this information to the designated

OSPF Routers

- Designed Router Notifies all Routers
 - Within its area

OSPF Routers

- Efficient
 - Only routers are informed (not hosts)
 - Usually only updates are transmitted, not

- Fast Convergence
 - When a failure occurs, a router transmits the notice to the designated router
 - Designated router sends the information back out to other routers immediately

- Carried in data field of IP packet
 - Encapsulation Protocol value is 89
- IP is unreliable, so OSPF messages do not always get through
- A single lost OSPF message does little or no harm

IP	IP Data Field	
Header	OSPF Message	

- Typical link-state but with enhancements
 - Authentication of routing messages
 - Additional hierarchy (to help with scalability)
 - Load balancing

Configure OSPF


```
<Output Omitted>
interface Ethernet0
ip address 10.64.0.1 255.255.255.0
!
<Output Omitted>
router ospf 1
network 10.64.0.0 0.0.0.255 area 0
```

```
interface Ethernet0
ip address 10.64.0.2 255.255.255.0
!
interface Serial0
ip address 10.2.1.2 255.255.252
<Output Omitted>
router ospf 1
network 10.2.1.0 0.0.0.3 area 0
network 10.64.0.0 0.0.0.255 area 0
```

Routing table @A

A#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- O 10.2.1.0/30 [110/65] via 10.64.0.2, 00:05:36, FastEthernet0/0
- C 10.64.0.0/24 is directly connected, FastEthernet0/0

Routing table @B

B#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 10.2.1.0/30 is directly connected, Serial0/0/0

C 10.64.0.0/24 is directly connected, FastEthernet0/0

Routing table @C

C#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.2.1.0/30 is directly connected, Serial0/0/1
- O 10.64.0.0/24 [110/65] via 10.2.1.2, 00:00:01, Serial0/0/1

Link-State Summary

Good

Converges relatively quickly

Bad

- Lots of information stored at each node because LSP for each node in network must be stored at each node (scalability problem)
- Flooding of LSPs uses bandwidth
- Potential security issue (if false LSP propagates)

Distance Vector VS. Link-state

- Key philosophical difference
 - Distance vector talks only to directly connected neighbors and tells them what is has learned
 - Link-state talks to everybody, but only tells them what it knows

References

- "Gregory Kesden" lecture of 20-770 Communications and Networking
- Nina Taft", The Basics of BGP Routing and its Performance in Today's Internet, Sprint.
- "Anonymous"
 - lecture of Addressing and Domain Name System, CS640
 - Telecom App2b
- Cisco CCNA Material
- "Jennifer Rexford", Internet Routing (COS 598A)

References

- Slide from "Agilent Technologies"
- Slide from "Anonymous" CS 332, Spring 2002
- Panko's Business Data Networking and Telecommunications, 5th edition
- Cisco CCNA Course Material
- สถาปัตยกรรมและโปรโตคอลที่ซีพี/ไอพี่ สุรศักดิ์ สงวนพงษ์