LECTURE #6 BIRTH-DEATH PROCESS

204528

Queueing Theory and Applications in Networks Assoc. Prof. Anan Phonphoem, Ph.D. (รศ.ดร. อนันต์ ผลเพิ่ม) Computer Engineering Department, Kasetsart University

Outline

- Birth-Death Process
- Markov Process Property
- Continuous Time Birth-Death Markov Chains
- State Transition Diagram
- A Pure Birth System
- A Pure Death System
- A Birth-Death Process
- Equilibrium Solution

- A Markov Process
- Homogeneous, aperiodic, and irreducible
- Discrete time / Continuous time
- State changes can only happen between neighbors

• Size of population

- System is in state E_k when consists of k members
- Changes in population size occur by at most one
- Size has been increased by one → "*Birth*"
- Size has been decreased by one → "*Death*"
- Transition probabilities p_{ij} do not change with time

5

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

- 6
- α_i = death (less one in population size)
- $\alpha_0 = 0$ (no population \rightarrow no death)
- λ_i = birth (increase one in population)
- $\lambda_i > 0$ (birth is allowed)
- Pure Birth = no decrement, only increment
- Pure Death = no increment, only decrement

Queueing Theory Model

- 7
- Population = customers in the queueing system
- Death = a customer departures from the system
- Birth = a customer arrives to the system

Transition matrix

8

	1 - λ ₀	λ_0	0	0	0	0	
P =	$lpha_1$	1 - λ_1 - α_1	λ_1	0	0	0	
	0	α_2	1 - λ ₂ - α ₂	λ_2			
	0		•••				
	0			1	2	•	
			α_{i}	1 -	- λ _i - α _i	λ	ʻi
							_

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Discrete Time Markov Chains

• One can stay in a *Discrete state (position)* and is permitted to change state at *Discrete time*.

Discrete Time Markov Chains

$$P\{X_n = j \mid X_1 = i_1, X_2 = i_2, ..., X_{n-1} = i_{n-1}\}$$

= P\{X_n = j \mid X_{n-1} = i_{n-1}\} Where n = 1,2,3,...

- X_n : The system is in state *j* at time *n*
- The system can begin at *state 0* with *initial probability* $P[X_0 = x]$
- $P\{X_n = j \mid X_{n-1} = i_{n-1}\}$ is the *one-step transition probability*

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Discrete Time Markov Chains

- From *initial probability* and *one-step transition probability*,
- we can find *probability of being in various states* at time n

Continuous Time Markov Chains

$$\begin{split} P\{X(t_{n+1}) &= j \mid X(t_1) = i_1, X(t_2) = i_2, \dots, X(t_n) = i_n\} \\ &= P\{X(t_{n+1}) = j \mid X(t_n) = i_n\} \\ \end{split}$$
 Where n = 1,2,3,... $t_1 < t_2 < \dots < t_n$

• One can stay in a *Discrete state (position)* and is permitted to change state at *Arbitrary time*

Markov Process Property

- Time that the process spends in any state must be "Memoryless"
- Discrete Time Markov Chains
 - Geometrically distributed state times
- Continuous Time Markov Chains
 - Exponentially distributed state times

Markov Process Property

For Discrete Time Markov Chain

- P[system in state i for N time units | system in current state i] = p^N
- P[system in state i for N time units before exiting from state i] = p^N (1-p)
- Geometrically distributed state times

14

Markov Process Property

For Continuous Time Markov Chain

• P[system in state i for time T | system in current state i]

$$= (1 - \mu \Delta t)^{T/\Delta t}$$

 $= e^{-\mu T}$ where $\Delta t \rightarrow 0$

• Exponentially distributed state times

Continuous Time Birth-Death Markov Chains

Let λ_i = birth rate in state i
 μ_i = death rate in state i

• Then

 $P[\text{state i to state } i - 1 \text{ in } \Delta t] = \mu_i \Delta t$ $P[\text{state i to state } i + 1 \text{ in } \Delta t] = \lambda_i \Delta t$ $P[\text{state i to state i in } \Delta t] = 1 - (\lambda_i + \mu_i) \Delta t$ $P[\text{state i to other state in } \Delta t] = 0$

Continuous Time Birth-Death Markov Chains

17

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

State Transition Diagram

18

- X(t) = #customers in the system at time t = birth - death in (0,t)
 p_i(t) = P[X(t) = i]
 - = Prob. that system is in state i at time t

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

State Transition Diagram

19

• From *t* to $t + \Delta t$

$$\begin{split} p_0(t+\Delta t) &= p_0(t)[1-\lambda_0\Delta t] + p_1(t)\mu_1\Delta t \\ p_i(t+\Delta t) &= p_i(t)[1-(\lambda_i+\mu_i)\Delta t] + p_{i+1}(t)\mu_{i+1}\Delta t + p_{i-1}(t)\lambda_{i-1}\Delta t \end{split}$$

• $\Delta t \rightarrow 0$ $dp_0(t)/dt = -\lambda_0 p_0(t) + \mu_1 p_1(t)$ $dp_i(t)/dt = -(\lambda_i + \mu_i) p_i(t) + \mu_{i+1} p_{i+1}(t) + \lambda_{i-1} p_{i-1}(t)$ • $\sum_{i=0}^{\infty} p_i(t) = 1$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Flow Balance Method

 μ_3

 μ_2

μ

• Observe all flows (*In* and *Out*) across the boundary

 μ_{i-1}

 μ_i

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

24 July 2012

'i+1

+2

(i+1

 μ_{i+1}

20

Flow Balance Method

• Flow Out = Flow In

• Draw a closed boundary around state i

$$(\lambda_i + \mu_i) p_i = \mu_{i+1} p_{i+1} + \lambda_{i-1} p_{i-1}$$

• Draw a closed boundary around state 0

$$\lambda_0 \mathbf{p}_0 = \boldsymbol{\mu}_1 \mathbf{p}_1$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Flow Balance Method

• Draw a closed boundary around state i at infinity

$$\lambda_i p_i = \mu_{i+1} p_{i+1}$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Flow Balance General Form

- Draw a closed boundary around state i
 - **Global Balance Equation** $\sum_{i \neq j} p_i p_{ij} = p_j \sum_{i \neq j} p_{ji}$

- Draw a closed boundary between state i and j
- Detailed Balance Equation

$$p_i p_{ij} = p_j p_{ji}$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

A Pure Birth System

- Assumption
 - $\mu_k = 0$ for all k
 - $\lambda_k = \lambda$ for all k
 - The system begins at time t₀ with 0 member

$$p_k(0) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

A Pure Birth System

25

- $dp_0(t)/dt = -\lambda_0 p_0(t) + \mu_1 p_1(t)$ • $dp_0(t)/dt = -\lambda p_0(t)$
- $dp_k(t)/dt = -(\lambda_k + \mu_k) p_k(t) + \mu_{k+1} p_{k+1}(t) + \lambda_{k-1} p_{k-1}(t)$ $\rightarrow dp_k(t)/dt = -\lambda p_k(t) + \lambda p_{k-1}(t)$
- Solution for $p_0(t)$ • $p_0(t) = e^{-\lambda t}$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand $\frac{\mathrm{d}\boldsymbol{\mathfrak{O}}}{\mathrm{d}t} = -\lambda\boldsymbol{\mathfrak{O}}$ $\boldsymbol{\mathfrak{O}} = \mathrm{e}^{-\lambda t}$

A Pure Birth System

26

• For k = 1

$$\Rightarrow dp_1(t)/dt = -\lambda p_1(t) + \lambda p_0(t)$$

 $= -\lambda p_1(t) + \lambda e^{-\lambda t}$
 $\Rightarrow p_1(t) = \lambda t e^{-\lambda t}$
• For k \ge 0, t \ge 0
 $\Rightarrow p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$ Poisson

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

24 July 2012

Distribution

Poisson Distribution

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

A Poisson Process

- The arrival of customers
- λ = the average rate that customer arrives
- $p_k(t) = Prob.$ that *k* arrivals occur during (0, t)
- K = # of arrivals in the interval *t*
- The average # of arrivals in an interval *t*, E[K] = ?

A Poisson Process

29

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Pure Birth Process Example

- Linear Birth Process
- Yule-Furry Process
- Consider cells which reproduce according to the following rules:
 - 1) A cell presented at time t has probability $\lambda \Delta t + o(\Delta t)$ of splitting in two in the interval (t, t + Δt)
 - 2) This probability is independent of age
 - 3) Events between different cells are independent

Modified from

- 1. http://www.bibalex.org/supercourse/supercourseppt/19011-20001/19531.pdf
- 2. The theory of stochastic processes By D. R. Cox, H. D. Miller

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Pure Birth Process Example

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Pure Birth Process Example Non-Probabilistic Analysis

- n(t) = no. of cells at time t
- $\lambda = \text{birth rate per single cell}$
- $n(t)\lambda\Delta t$ births occur in $(t, t + \Delta t)$

$$n(t + \Delta t) = n(t) + n(t)\lambda\Delta t$$

$$n'(t) = \frac{n(t + \Delta t) - n(t)}{\Delta t} = n(t)\lambda$$

$$\frac{n'(t)}{n(t)} = \frac{d}{dt} \log n(t) = \lambda$$

$$\log n(t) = \lambda t + c$$

$$n(t) = Ke^{\lambda t} , n(0) = n_0$$

$$n(t) = n_0 e^{\lambda t}$$

Anan Phonphoem

Dept. of Computer Enginerring, Kasetsart University, Thailand

Pure Birth Process Example Probabilistic Analysis

- 33
- N(t) = no. of cells at time t
- $P{N(t) = n} = P_n(t)$
- Prob. of birth in (t, $t + \Delta t$) if {N(t) = n} = $n\Delta t + o(\Delta t)$
- $P_n(t + \Delta t) = P_n(t)(1 n \lambda \Delta t + o(\Delta t)) + P_{n-1}(t)((n-1)\lambda \Delta t + o(\Delta t))$

$$P_{n}(t + \Delta t) - P_{n}(t) = -n\lambda\Delta tP_{n}(t) + P_{n-1}(t)(n-1)\lambda\Delta t + o(\Delta t)$$

$$\frac{P_n(t + \Delta t) - P_n(t)}{\Delta t} = -n\lambda P_n(t) + P_{n-1}(t)(n-1)\lambda + o(\Delta t) \quad \text{as } \Delta t \rightarrow 0$$

$$\mathbf{P'}_{n}(t) = -n\lambda \mathbf{P}_{n}(t) + (n-1)\lambda \mathbf{P}_{n-1}(t)$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Pure Birth Process Example Probabilistic Analysis

$$P'_{n}(t) = -n\lambda P_{n}(t) + (n-1)\lambda P_{n-1}(t)$$

• Initial condition: $P_{n_0}(0) = P\{n(0) = n_0\} = 1$

$$\mathbf{P}_{n}(t) = \begin{pmatrix} n-1 \\ n-n_{0} \end{pmatrix} e^{-\lambda n_{0}t} (1-e^{-\lambda t})^{n-n_{0}} \qquad n = n_{0}, n_{0}+1, \dots$$

- Solution is negative binomial distribution
 - = Probability of obtaining exactly n_0 successes in n trials

Pure Birth Process Example Probabilistic Analysis

- Suppose p = prob. of success and q = 1 - p = prob. of failure
- Then in the first (n 1) trials results in $(n_0 1)$ successes and $(n n_0)$ failures followed by success on nth trial

$$P_{n}(t) = {n-1 \choose n_{0}-1} p^{n_{0}-1} q^{n-n_{0}} p = {n-1 \choose n-n_{0}} p^{n_{0}} q^{n-n_{0}}$$

• If $p = e^{-\lambda t}$ and $q = (1 - e^{-\lambda t})$
• $\rightarrow P_{n}(t)$ is as same as previous equation

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Yule-Furry Process

- Yule studied this process in connection with theory of evolution
 - i.e. population consists of the species within a genus and creation of new element is due to mutations
 - Neglects probability of species dying out and size of species
- Furry used same model for radioactive transmutations

a genus is a low-level taxonomic rank used in the classification of living

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

A Pure Death System

- Example
 - Microbial (a bacterium that causes disease) risk analysis
- Assumption
 - $\mu_k = \mu \ge 0$ for all k
 - $\lambda_k = 0$ for all k
 - The system begins with N members
 - k = 1, 2, 3, ..., N

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

A Pure Death Process

$$p_{k}(t) = \frac{(\mu t)^{N-k}}{(N-k)!} e^{-\mu t} \qquad 0 < k \le N$$

$$\frac{dp_{0}(t)}{dt} = \frac{\mu(\mu t)^{N-1}}{(N-1)!} e^{-\mu t} \qquad k = 0$$

Erlang Distribution

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

39

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

- Assumption
 - $\lambda_k = \lambda$ for $k \ge 0$
 - $\mu_k = \mu$ for $k \ge 1$
 - The system begins at time t₀ with 0 member

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

- A Birth-Death Process
 - Constant coefficients λ and μ
- Interarrival Time / Service Time / #Servers
- Memoryless / Memoryless / 1 Server
- M/M/1 = A single-server queue with a Poisson arrival and an exponential distribution for service time

42

- A(t) = CDF of the arrival time
 - $\label{eq:lambda} \lambda_k \!=\! \lambda \qquad \qquad \text{for } k \geq 0$

•
$$A(t) = 1 - e^{-\lambda t}$$

• B(x) = CDF of the service time

•
$$\mu_k = \mu$$
 for $k \ge 1$

■
$$B(x) = 1 - e^{-\mu x}$$

43

- $dp_0(t)/dt = -\lambda p_0(t) + \mu p_1(t)$
- $dp_k(t)/dt = -(\lambda + \mu)p_k(t) + \lambda p_{k-1}(t) + \mu p_{k+1}(t)$
- Now we try to find the solution!
 - Hint: Solved by using *z*-transforms

$$p_{k}(t) = e^{-(\lambda+\mu)t} \begin{pmatrix} \rho^{(k-i)/2} I_{k-i}(at) \\ + \rho^{(k-i-1)/2} I_{k+i+1}(at) \\ + (1-\rho)\rho^{k} \sum_{j=k+i+2}^{\infty} \rho^{-j/2} I_{j}(at) \end{pmatrix}$$

• Where $\rho = \lambda/\mu$ and $a = 2\mu\rho^{1/2}$

•
$$I_k(x) = \sum_{m=0}^{\infty} \frac{(x/2)^{k+2m}}{(k+m)!m!}$$
 $k \ge -1$

• Time dependent behavior of the state prob.

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

- The time-dependent solution is unmanageable
- $p_k(t) \rightarrow$ not too useful \rightarrow transient
- Let $p_k \equiv \text{limiting probability (system = k members)}$ = $\lim_{t \to \infty} p_k(t) = \text{System in state } E_k$
- p_k is not time-dependent

• From

 $dp_0(t)/dt = -\lambda_0 p_0(t) + \mu_1 p_1(t)$ $dp_k(t)/dt = -(\lambda_k + \mu_k) p_k(t) + \lambda_{k-1} p_{k-1}(t) + \mu_{k+1} p_{k+1}(t)$

- If set $\lim_{t \to \infty} dp_k(t)/dt = 0$
- Obtain the result

 $\begin{array}{ll} 0 &= -\lambda_0 p_0 + \mu_1 p_1 & \quad k = 0 \\ 0 &= - \, (\lambda_k \! + \! \mu_k) p_k + \lambda_{k\! - \! 1} p_{k\! - \! 1} + \mu_{k\! + \! 1} p_{k\! + \! 1} & \quad k \ge 1 \end{array}$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

47

• From conservation relation

$$\sum_{k=0}^{\infty} p_k(t) = 1$$

• Find the answer for p₀ and p_i

48

• From

$$\begin{array}{ll} 0 &= -\lambda_0 p_0 + \mu_1 p_1 & k = 0 \\ 0 &= - \left(\lambda_k + \mu_k\right) p_k + \lambda_{k-1} p_{k-1} + \mu_{k+1} p_{k+1} & k \geq 1 \\ \end{array}$$

 Yield

$$\lambda_0 p_0 = \mu_1 p_1$$
$$p_1 = (\lambda_0 / \mu_1) p_0$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

• And for k = 1

$$\begin{split} &(\lambda_{k} + \mu_{k})p_{k} \\ &(\lambda_{1} + \mu_{1})p_{1} \\ &(\lambda_{1} + \mu_{1})(\lambda_{0}/\mu_{1})p_{0} \\ &(\lambda_{1}\lambda_{0}/\mu_{1})p_{0} + \lambda_{0}p_{0} \\ &(\lambda_{1}\lambda_{0}/\mu_{1})p_{0} \end{split}$$

 $= \lambda_{k-1}p_{k-1} + \mu_{k+1}p_{k+1}$ = $\lambda_0p_0 + \mu_2p_2$ = $\lambda_0p_0 + \mu_2p_2$ = $\lambda_0p_0 + \mu_2p_2$

$$=$$
 $\mu_2 p_2$

$$p_2 = \frac{\lambda_1 \lambda_0}{\mu_1 \mu_2} p_0$$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

$$p_{0} = \left(1 + \sum_{i=0}^{\infty} \prod_{k=0}^{i-1} \frac{\lambda_{k}}{\mu_{k+1}}\right)^{-1}$$

$$p_i = p_0 \left(\prod_{k=0}^{i-1} \frac{\lambda_k}{\mu_{k+1}} \right)$$

 $\forall i \geq 1$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

Homework

• Please check our class web site for homework assignment