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Birth-Death Process 

• A Markov Process 

• Homogeneous, aperiodic, and irreducible 

• Discrete time / Continuous time 

• State changes can only happen between neighbors 
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Birth-Death Process 

• Size of population 

• System is in state Ek when consists of k members 

• Changes in population size occur by at most one 

• Size has been increased by one  “Birth” 

• Size has been decreased by one  “Death” 

• Transition probabilities pij do not change with time 
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Birth-Death Process 

                                i                  j = i – 1  

                           1 – i – i           j = i  

        i                        j = i + 1  

                                  0                 Otherwise 
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pij =  

i-1 i i+1 

1 – i – i 

i i 



Birth-Death Process 

• i = death (less one in population size) 

• 0 = 0 (no population  no death) 

• i = birth (increase one in population) 

• i > 0 (birth is allowed) 

• Pure Birth = no decrement, only increment 

• Pure Death = no increment, only decrement 
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Queueing Theory Model 

• Population = customers in the queueing system 

• Death = a customer departures from the system 

• Birth = a customer arrives to the system 
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Transition matrix 
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1 - 0  

P =  

0 

1 
1 - 1- 1 1 

2 
1 - 2- 2 2 

0 

0 0 

0 

0 

0 

0 

0 

… 

i 
1 - i- i i 

0 

0 

… 

… 



Discrete Time Markov Chains 

• One can stay in a Discrete state (position) and is 

permitted to change state at Discrete time. 
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Discrete Time Markov Chains 

• Xn: The system is in state j at time n 

• The system can begin at state 0 with initial probability P[X0 = x] 

• P{Xn = j | Xn-1= in-1} is the one-step transition probability 
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 = P{Xn = j | Xn-1= in-1 }  Where n = 1,2,3,…
 

P{Xn = j | X1 = i1 , X2 = i2 ,…, Xn-1 = in-1}  



Discrete Time Markov Chains 

• From initial probability and one-step transition 

probability,  

• we can find probability of being in various states 

at time n 
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Continuous Time Markov Chains 

• One can stay in a Discrete state (position) and is 
permitted to change state at Arbitrary time 
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 = P{X(tn+1) = j | X(tn) = in}  

Where n = 1,2,3,…       t1 < t2 < … <tn 

P{X(tn+1) = j | X(t1) = i1 , X(t2) = i2 ,…, X(tn) = in}  



Markov Process Property 

• Time that the process spends in any state must be 

“Memoryless” 

• Discrete Time Markov Chains 

• Geometrically distributed state times 

• Continuous Time Markov Chains 

• Exponentially distributed state times 
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Markov Process Property 

For Discrete Time Markov Chain 

• P[system in state i for N time units | 

system in current state i] = pN 

• P[system in state i for N time units 

before exiting from state i] = pN (1-p) 

• Geometrically distributed state times 
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i 

p
 

1-p
 



Markov Process Property 

For Continuous Time Markov Chain 

• P[system in state i for time T | 

system in current state i]  

  = (1 – µt) T/ t 

  = e–µT                             where  t  0 

• Exponentially distributed state times 
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i 

1 – µt 

µt 



Continuous Time Birth-Death Markov Chains 

• Let i = birth rate in state i 

          µi = death rate in state i 

• Then   

 P[state i to state i – 1 in t]    = µi t 

 P[state i to state i + 1 in t]   = i t 

 P[state i to state i in t]         = 1 – (i + µi) t 

 P[state i to other state in t]  = 0  
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Continuous Time Birth-Death Markov Chains 

                                µi t                j = i – 1  

                           1 – (i + µi) t     j = i  

         i t              j = i + 1  

                                  0                   Otherwise 
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pij =  

i-1 i i+1 

1 – (i + µi) t 

i t µi t 
 

t  0 



State Transition Diagram 

• X(t) = #customers in the system at time t 

   = birth – death in (0,t)  

• pi(t) = P[ X(t) = i ] 

         = Prob. that system is in state i at time t 
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0 1 

0 

µ1 

2 … i-1 i i+1 

1 
2 i-2 

i-1 
i i+1 

µ2 
µ3 

µi-1 
µi µi+1 

µi+2 

… 

pi(t) 



State Transition Diagram 

• From t to t + t 

 p0(t+t) = p0(t)[1 – 0t] + p1(t)µ1t 

 pi(t+t) = pi(t)[1 – (i+µi)t] + pi+1(t)µi+1t + pi-1(t) i-1t 
 

• t  0 

  dp0(t)/dt  = – 0p0(t) + µ1p1(t) 

  dpi(t)/dt  = – (i+µi) pi(t) + µi+1pi+1(t) + i-1pi-1(t) 
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• Σ pi(t) = 1 
i = 0 

 



Flow Balance Method 

• Draw a closed boundary 

• Observe all flows (In and Out) across the boundary 
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0 
1 

2 

0 1 

µ1 

2 … i-1 i i+1 

i-2 
i-1 

i i+1 

µ2 
µ3 

µi-1 
µi µi+1 

µi+2 

… 



Flow Balance Method 

• Flow Out = Flow In 
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µi+1 

i 

i-1 
i 

µi 

 Draw a closed boundary 

around state i 

 (i+µi) pi = µi+1pi+1+i-1pi-1 

µ1 

0 

0 

 Draw a closed boundary 

around state 0 

          0p0 = µ1p1 



Flow Balance Method 
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 Draw a closed boundary 

around state i at infinity 

          ipi = µi+1pi+1 

i i+1 

i 

µi+1 



Flow Balance General Form 
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 Σ pi pij = 
i  j 

pj Σ  pji 
i  j µi+1 

i 

i-1 
i 

µi 

 Draw a closed boundary around 

state i 

 Global Balance Equation 

  pi pij = pj pji 

i j 

i 

µj 

 Draw a closed boundary 

between state i and j 

 Detailed Balance Equation 



A Pure Birth System 

• Assumption 

• µk = 0         for all k 

• k =          for all k 

• The system begins at time t0 with 0 member 
            1         k = 0 

                           0         k  0   
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0 1 

0 

2 … k-1 k k+1 

1 
2 k-2 

k-1 
k 

k+1 

… 

pk(0) = 



A Pure Birth System 

• dp0(t)/dt  = –0p0(t) + µ1p1(t) 

   dp0(t)/dt  = –p0(t)  

 

• dpk(t)/dt = – (k+µk) pk(t)+µk+1pk+1(t)+k-1pk-1(t) 

   dpk(t)/dt = – pk(t) + pk-1(t) 

 

• Solution for p0(t) 

   p0(t) = e–t 
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d 
dt = –   

 = e–t  



A Pure Birth System 

• For k = 1 

   dp1(t)/dt = – p1(t) + p0(t) 

                             = – p1(t) +  e–t 

   p1(t)  =  te–t 
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 For k  0, t  0 

   (t)k 

 pk(t) =             e–t    
k! 

Poisson Distribution 
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A Poisson Process 

• The arrival of customers 

•  = the average rate that customer arrives 

• pk(t) = Prob. that k arrivals occur during (0,t) 

• K = # of arrivals in the interval t 

• The average # of arrivals in an interval t,  E[K] = ? 
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et 

A Poisson Process 
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 E[K] = Σ k pk(t) 
k = 0   

 

=  e–t Σ k 
k = 0   

 (t)k 

k! 

=  e–t Σ  
k = 1   

 (t)k 

(k-1)! 

=  e–t t    Σ  
k = 0   

 (t)k 

k! 

=  t 



Pure Birth Process Example 

• Linear Birth Process 

• Yule-Furry Process 

• Consider cells which reproduce according to the 

following rules: 

1) A cell presented at time t has probability t + o(t) 

of splitting in two in the interval (t, t + t ) 

2) This probability is independent of age 

3) Events between different cells are independent 
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Modified from 

1. http://www.bibalex.org/supercourse/supercourseppt/19011-20001/19531.pdf 

2. The theory of stochastic processes By D. R. Cox, H. D. Miller 



Pure Birth Process Example 
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time 

1 2 3 4 5 6 7 

Cell Division 

http://www.dmturner.org/Teacher/

Library/5thText/SimplePart3.html 



Pure Birth Process Example 

Non-Probabilistic Analysis 

• n(t) = no. of cells at time t 

•   = birth rate per single cell 

• n(t)t  births occur in (t, t + t) 
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n(t + t) = n(t) + n(t)t  

n(t + t) – n(t) 

t  
= n(t) n’(t) = 

n’(t) 

n(t) 
=      log n(t) =  

d 

dt 

log n(t) = t + c 

n(t) = Ket  , n(0) = n0 
  

n(t) = n0e
t 



Pure Birth Process Example 

Probabilistic Analysis 

• N(t) = no. of cells at time t 

• P{N(t) = n} = Pn(t) 

• Prob. of birth in (t, t + t) if {N(t) = n} = nt + o(t) 
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Pn(t + t)            = Pn(t)(1 – n t + o(t)) + Pn–1(t)((n–1)t + o(t)) 
 

Pn(t + t) – Pn(t) = – ntPn(t) + Pn–1(t)(n–1)t  + o(t) 

t 

as t  0 Pn(t + t) – Pn(t)    = – nPn(t) + Pn–1(t)(n–1)  + o(t) 

P’n(t) = – nPn(t) + (n–1)Pn–1(t) 



• Solution is negative binomial distribution 

• = Probability of obtaining exactly n0 successes in n trials 
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•  Initial condition:    Pn0
(0) = P{n(0) = n0} = 1 

P’n(t) = – nPn(t) + (n–1)Pn–1(t) 

Pn(t) =                e–n
0
t (1 – e–t )n-n

0 
n – 1 

 n – n0  
n = n0 , n0 +1 , …  

Pure Birth Process Example 

Probabilistic Analysis 



• Suppose p = prob. of success  

       and q = 1 – p = prob. of failure 

• Then in the first (n – 1) trials results in (n0– 1) 

successes and (n – n0) failures followed by success 

on nth trial 

 

 

• If p = e–t  and  q = (1 – e–t)      

•  Pn(t) is as same as previous equation 
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Pn(t) =                pn
0
-1 qn-n

0 .p 
n – 1 

 n0 – 1  

n = n0 , n0 +1 , …  

=                pn
0
 qn-n

0 
n – 1 

 n – n0  

Pure Birth Process Example 

Probabilistic Analysis 



Yule-Furry Process 

• Yule studied this process in connection with theory of 

evolution 

• i.e. population consists of the species within a genus and 

creation of new element is due to mutations 

• Neglects probability of species dying out and size of species 

• Furry used same model for radioactive transmutations 
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a genus is a low-level taxonomic rank used in the classification of living 



A Pure Death System 

• Example 
• Microbial (a bacterium that causes disease) risk analysis 

• Assumption 
• µk = µ   0      for all k 

• k = 0              for all k 

• The system begins with N members 
• k = 1,2,3,…,N  
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0 1 

µ1 

2 … k-1 k k+1 

µ2 
µ3 

µk-1 
µk 

µk+1 
µk+2 

… 



A Pure Death Process 
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pk(t) =                             e–t                    0 < k  N 
(t)N–k 

(N – k)! 

       =                             e–t                      k = 0 
(t)N–1 

(N – 1)! 

dp0(t)
 

dt 

Erlang Distribution 



M/M/1 
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A Birth-Death Process : M/M/1 

• Assumption 

• k =             for k  0 

• µk = µ            for k  1 

• The system begins at time t0 with 0 member 
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0 1 


 

µ
 

2 … k-1 k k+1 


 


 

 


 


 


 

µ
 

µ
 

µ
 

µ
 

µ
 

µ
 

… 



A Birth-Death Process : M/M/1 

• A Birth-Death Process 

• Constant coefficients  and µ 

• Interarrival Time / Service Time / #Servers 

• Memoryless / Memoryless / 1 Server 

• M/M/1 = A single-server queue with a Poisson 

arrival and an exponential distribution for service 
time 
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A Birth-Death Process : M/M/1 

• A(t) = CDF of the arrival time  

 k =             for k  0 

 A(t) = 1 – e– t 

• B(x) = CDF of the service time  

 µk = µ            for k  1 

 B(x) = 1 – e– µx 
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A Birth-Death Process : M/M/1 

• dp0(t)/dt  = –p0(t) + µp1(t)  

• dpk(t)/dt = – (+µ)pk(t) + pk-1(t) + µpk+1(t) 

• Now we try to find the solution! 

• Hint: Solved by using z-transforms 
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A Birth-Death Process : M/M/1 
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   pk(t) = e – (+µ)t           (k-i)/2 Ik-i(at)  

                              + (k-i-1)/2 Ik+i+1(at)  

            + (1 – )k       –j/2 Ij(at)  

 Where  = /µ   and  a = 2µ1/2 

 Ik(x) =                         k  –1     

 Time dependent behavior of the state prob. 

j = k+i+2 

 

m = 0 

 
(x/2)k+2m 

(k+m)!m! 



Equilibrium Solution 
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 pk(t)  not too useful  transient 

 Let  pk  limiting probability (system = k members) 

               = lim pk(t)     =  System in state Ek 

 
t   

 The time-dependent solution is 

unmanageable 

 pk is not time-dependent 



Equilibrium Solution 
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 From 

 dp0(t)/dt  = –0p0(t) + µ1p1(t)  

 dpk(t)/dt = – (k+µk)pk(t) + k-1pk-1(t) + µk+1pk+1(t) 

 If set             lim dpk(t)/dt  = 0 
t   

 Obtain the result 

 0  = –0p0 + µ1p1                                    k = 0 

 0 = – (k+µk)pk + k-1pk-1 + µk+1pk+1         k  1 



Equilibrium Solution 
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  Σ pk(t) = 1 
k = 0 

 

 From conservation relation 

 Find the answer for p0 and pi 



Equilibrium Solution 
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 From 

    0  = –0p0 + µ1p1                                    k = 0 

 0 = – (k+µk)pk + k-1pk-1 + µk+1pk+1         k  1 

 Yield 

  0p0 = µ1p1 

       p1 = (0 /µ1 ) p0 



Equilibrium Solution 

• And for k = 1 

  (k+µk)pk    = k-1pk-1 + µk+1pk+1 

   (1+µ1)p1    = 0p0 + µ2p2 

   (1+µ1)( 0 /µ1 )p0    = 0p0 + µ2p2  

  (10 /µ1 )p0 + 0 p0  = 0p0 + µ2p2  

   (10 /µ1 )p0             =             µ2p2 
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p2  =             p0  
10 

µ1µ2 



Equilibrium Solution 
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pi = p0  
k = 0 

i – 1  k 

µk+1 
i  1 

p0 =   
k = 0 

i – 1  k 

µk+1 
 

i = 0 

  

1 +  
–1  



Homework 

• Please check our class web site for homework 

assignment 
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