204528 QUEUEING THEORY AND APPLICATIONS IN NETWORKS

Assoc. Prof. Anan Phonphoem, Ph.D. (รศ.ดร. อนันต์ ผลเพิ่ม) Computer Engineering Department, Kasetsart University

Outline

- Overview
- Queueing system
- Queueing process characteristics
- Notation
- Basic queueing system

Queue in real life situation

- Wait for buying lunch
- Wait for taking a ride in Disney World
- Wait for withdraw money from ATM
- Wait for a green light
- Wait for Bug 1113 to pick up our call
- Etc.

http://michael.toren.net/

Who like to wait?

- Customer does not
- Entrepreneur does not like it either
 - Cost more money
 - Cost more space for waiting
 - Customers loss
 - Unhappy customers

http://www.ac-nancy-metz.fr/enseign/anglais/Henry/transport.htm

So, why waiting?

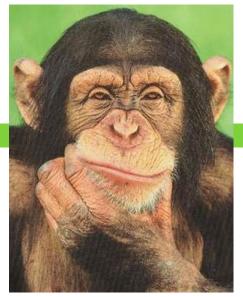
- Demand > Service availability
- Why service is not enough?
 - Not economics
 - No space
 - Unpredictable arrival

Still Waiting ...

- Interesting questions for customers?
 - How long do I need to wait?
 - How many people are now in the line?
 - When should I come to get serve faster?

Still Waiting ...

- Interesting questions for service provider?
 - How big is the waiting area?
 - How many customers leave?
 - Should we add some more tellers?
 - Should the system form 1 or 3 queues?
 - Should the system provide a fast lane?



http://gotoknow.org/file/lilygroup/thinkingshi.jpg

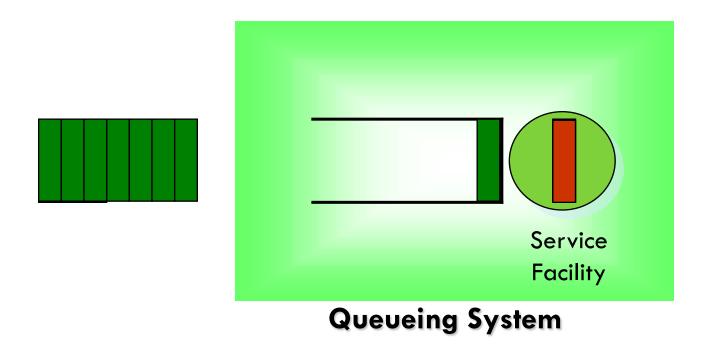
Here comes ...Queueing Theory

- Describe the queue phenomena
 - Waiting and serving
- Model the system mathematically
- Try to answer those questions

Queueing System

- Arriving for service
- Waiting for service
- Getting serve
- Leaving the system

General queueing system



Queueing process characteristics

- Arrival pattern
- Service pattern
- Queue discipline
- System capacity
- Number of service channels
- Number of service stages

Arrival pattern

- Stochastic
 - Probability distribution
 - Single or batch arrival
- Behavior of customer
 - Patient customer
 - Wait forever
 - Impatient customer
 - Wait for a period and decide to leave
 - See the long line and decide not to join
 - Change the waiting line

Arrival pattern

- Is it time dependent?
 - Stationary arrival pattern
 (time independent probability distribution)
 - Non-stationary arrival pattern

Service pattern

- Distribution for service time
- Single or batch (parallel machine) service
- Service process depends on number of customers waiting (state dependent)
- Very fast service → still have a line?
 - Depends also on the arrival
 - May assume mutually independent

Queue discipline

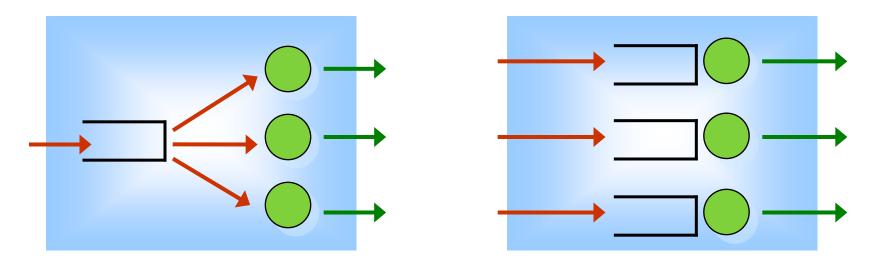
- Manner of customers to get serve
- First come, first serve
- Last come, first serve
- Random serve
- Priority serve
 - Preemptive
 - Nonpreemptive

System capacity

- Finite capacity
 - Maximum system size
- Infinite capacity

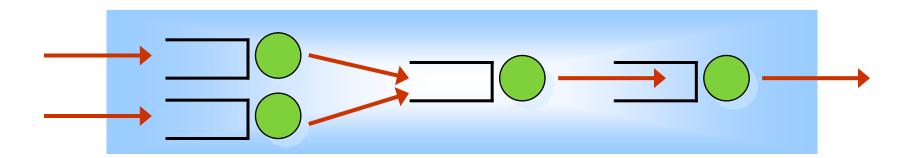
Number of service channels

- Multiserver queueing system
 - Single line service
 - Multiple line service



Stages of service

- Single stage
- Multiple stages
 - Without feedback (Entrance Exam)
 - With feedback (Manufacturing)



Queueing Notation

Kendall's notation (1953)

A/B/X/Y/Z

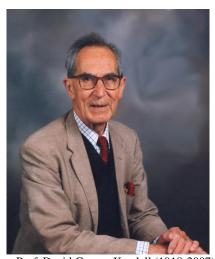
A: Interarrival-time distribution

B: Service time distribution

X: # of parallel service channels

Y: System capacity

Z : Queue discipline



Prof. David George Kendall (1918-2007) http://www.statslab.cam.ac.uk/kendall/index.html

Characteristics	Symbol	Explanation
A & B	M	Exponential (Memory less)
(Interarrival /	D	Deterministic
Service Time)	$E_{\mathbf{k}}$	Erlang
	G	General
X (# Servers)	1,2,,∞	
Y (Capacity)	1,2,,∞	
Z (Q discipline)	FCFS, PR	

- M/M/3/∞/FCFS
 - Exponential interarrival time
 - Exponential service time
 - 3 parallel servers
 - Unlimited space
 - First-come first-serve queue discipline

- M/D/1
 - Exponential interarrival time
 - Deterministic service time
 - 1 server
 - (default) Unlimited space
 - (default) FCFS queue discipline

- M/M/1
- M/M/c/k
- M/M/∞
- Ek/M/1
- M/G/1
- G/M/m
- G/G/1

- G/G/m
 - Interarrival time with distribution A(t)
 - Service time with distribution B(x)
 - m servers
- C_n : The nth customer enters system

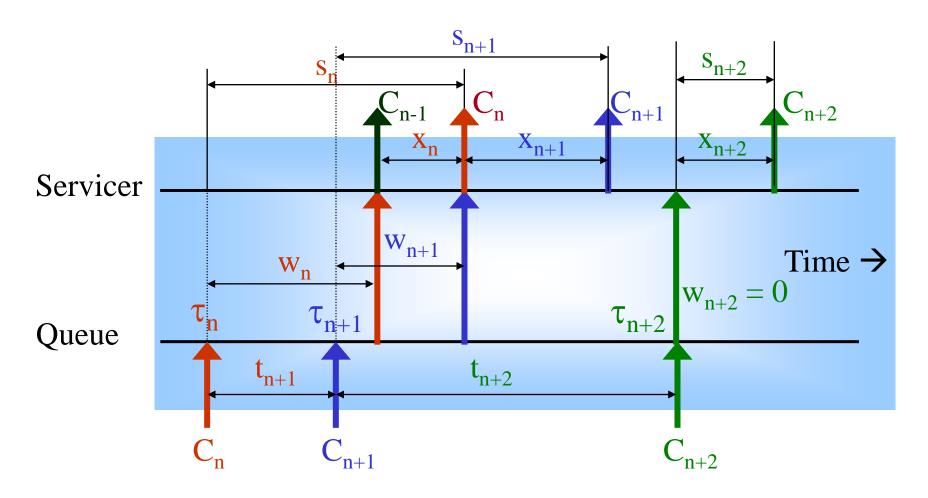
- τ_n : arrival time for C_n
- t_n : Interarrival time $(\tau_n \tau_{n-1})$
- x_n : service time for C_n

$$P[t_n \le t] = A(t)$$

$$P[x_n \le x] = B(x)$$

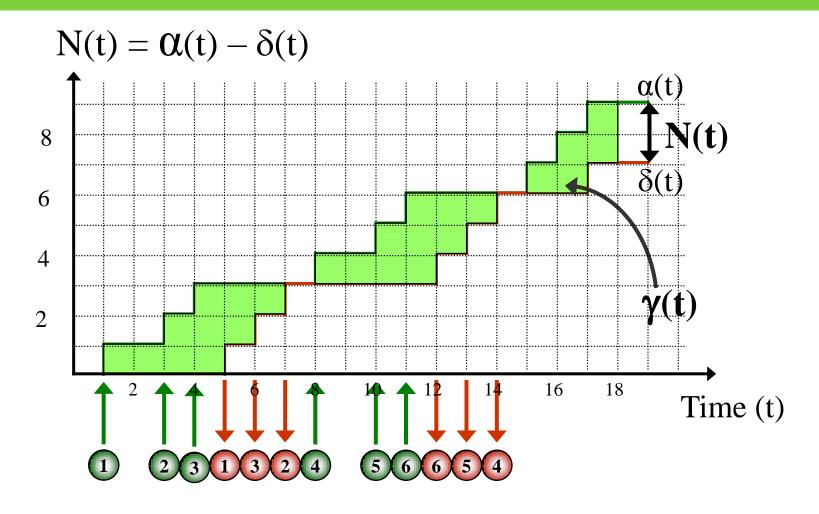
- w_n: waiting time in queue for C_n
- s_n : system time for $C_n \rightarrow (w_n + x_n)$
- λ : average arrival rate
- μ : average service rate
- $\tilde{t} = \lim_{n \to \infty} t_n = \frac{1}{\lambda}$
- $\tilde{x} = \lim_{x \to \infty} x_n = \frac{1}{\mu}$

Time diagram notation



Dept. of Computer Enginerring, Kasetsart University, Thailand

- N(t): # of customers in the system @time t
- U(t): Unfinished work @time t
 - U(t) = 0 \rightarrow System idle
 - U(t) > 0 \rightarrow System busy
- $\alpha(t)$: # of arrivals in (0,t)
- $\delta(t)$: # of departures in (0,t)



Dept. of Computer Enginerring, Kasetsart University, Thailand

- λ_t : arrival rate
- $\lambda_t = \frac{\alpha(t)}{t} = \# \text{ of arrival / time}$
- γ(t): total time all customers spent in the system (customer-seconds)
- $T_t = \frac{\gamma(t)}{\alpha(t)} = \text{ system time / customer}$

•
$$\overline{N}_t = \frac{\gamma(t)}{t} = \text{avg.# customers in system}$$

$$= \underline{\alpha(t)} \ \underline{\gamma(t)}$$

$$= \lambda_t T_t$$

- As $t \rightarrow \infty$
 - $\lambda = \lim_{t \to \infty} \lambda_t$
 - $T = \lim_{t \to \infty} T_t$

$$\overline{N} = \lambda T$$

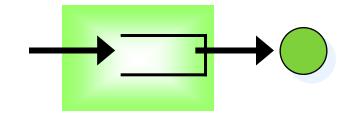
Little's Result

$$\overline{N} = \lambda T$$

"The average number of customers in a queueing system is equal to the arrival rate of customers to that system, times the average time spent in the system"

Little's Result

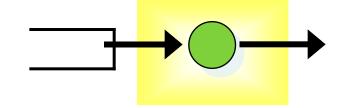
$$\overline{N}_q = \lambda W$$



- N_q: avg.# customers in queue
- λ : arrival rate
- W: avg. time spent in the queue

Little's Result

$$\overline{N}_s = \lambda \overline{x}$$



- N_s: avg.# customers in service fac.
- λ : arrival rate
- $\bullet \overline{x}$: avg. time spent in the service fac.

- $T = W + \overline{X}$
- ρ : Utilization factor
 - : rate of work / rate of max. capacity
- $\rho = \lambda \overline{x}$; for a single server
- $\rho = \frac{\lambda \overline{X}}{m}$; for m servers
- for G/G/1 to be stable: $0 \le \rho < 1$