01204312 Probability Theory and Random Processes

Department of Computer Engineering, Faculty of Engineering, Kasetsart University, THAILAND

1st semester 2010 (June – September)

Lecture #11 Stochastic Process – II

Assoc. Prof. Anan Phonphoem, Ph.D. *http://www.cpe.ku.ac.th/~anan*

Department of Computer Engineering, Faculty of Engineering, Kasetsart University, THAILAND

Outline

- Stationary Process
- Wide-sense Stationary Process

Stationary and Non-stationary Process

From Christopher Dougherty 2000–2006 slide

Stationary Process

- For a random process X(t),
 - At t_1 : X(t_1) has pdf = $f_{X(t_1)}(x)$
 - Normally, pdf depends on t₁
 - However, pdf may not depend on t₁
- Stationary Process
 - Same random variable at all time
 - No statistical properties change with time

$$f_{X(t_1)}(x) = f_{X(t_1 + \tau)}(x) = f_X(x)$$

Stationary Process

Definition: A stochastic process X(t) is stationary iff for all sets of time t_1, \ldots, t_m and any time different τ ,

$$f_{X(t_1),...,X(t_m)}(x_1,...,x_m) = f_{X(t_1+\tau),...,X(t_m+\tau)}(x_1,...,x_m)$$

Stationary Random Sequence

Definition: A random sequence X_n is stationary iff for any finite sets of time instants n_1, \ldots, n_m and any time different k,

$$f_{X(n_{1}),...,X(n_{m})}(x_{1},...,x_{m}) = f_{X(n_{1}+k_{1}),...,X(n_{m}+k_{1})}(x_{1},...,x_{m})$$

Stationary Process

Stationary Random Sequence

Theorem: A stationary random sequence X_n, for all m

$$E[X_m] = \mu_X$$

$$R_X[m.k] = R_X[0,k] = R_X[k]$$

$$C_X[m,k] = R_X[k] - \mu^2_X = C_X[k]$$

- Telegraph Signal, X(t) take value ± 1
- $X(0) = \pm 1$ with probability = 0.5
- Let X(t) toggles the polarity with each occurrence of an event in a Poisson process rate α

- Find PMF of X(t), $f_{X(t)}(x)$
- P[X(t)=1] = P[X(t) | X(0) = 1] P[X(0) = 1]+ P[X(t) | X(0) = -1] P[X(0) = -1]
- P[X(t) | X(0) = 1] = P[N(t) = even] $= \sum_{j=0}^{\infty} \frac{(\alpha t)^{2j}}{(2j)!} e^{-\alpha t}$ $= e^{-\alpha t} (1/2) (e^{-\alpha t} + e^{-\alpha t})$ $= (1/2) (1 + e^{-2\alpha t})$

• P[X(t) | X(0) = -1] = P[N(t) = odd] $= \sum_{j=0}^{\infty} \frac{(\alpha t)^{2j+1}}{(2j+1)!} e^{-\alpha t}$ $= e^{-\alpha t} (1/2) (e^{-\alpha t} - e^{-\alpha t})$ $= (1/2) (1 - e^{-2\alpha t})$

•
$$P[X(t) = 1]$$

= $P[X(t) | X(0) = 1] P[X(0) = 1]$
+ $P[X(t) | X(0) = -1] P[X(0) = -1]$
= $(1/2) (1 + e^{-2\alpha t})(1/2) + (1/2) (1 - e^{-2\alpha t})(1/2)$
= $1/2$

•
$$P[X(t) = -1]$$

= 1 - $P[X(t) = 1] = 1/2$
 $f_{X(t)}(x) = \begin{cases} 1/2 & X(t) = -1, 1\\ 0 & Otherwise \end{cases}$

Anan Phonphoem Dept. of Computer Enginerring, Kasetsart University, Thailand

•
$$\mu_X(t) = 1 (1/2) + (-1)(1/2) = 0$$

• Var [X(t)] = E[X²(t)]
= $1^2(1/2) + (-1)^2(1/2) = 1$

$$f_{X(t_1),...,X(t_m)}(x_1,...,x_m) = f_{X(t_1+\tau),...,X(t_m+\tau)}(x_1,...,x_m)$$

Wide Sense Stationary

Definition: X(t) is a wide sense stationary random process iff for all t, $E[X(t)] = \mu_X$ $R_x(t,\tau) = R_x(0,\tau) = R_x(\tau)$

Definition: X_n is a wide sense stationary random sequence iff for all n, $E[X_n] = \mu_X$ $R_X[n,k] = R_X[0,k] = R_X[k]$

Wide Sense Stationary

- For every **stationary** process or sequence, it is also **wide sense stationary**.
- However, if it is a **wide sense stationary** it may or may not be **stationary**.

- For n = even
 - $X_n = \pm 1$ with prob = 0.5
- For n = odd
 - $X_n = -1/3$ with prob = 0.9
 - $X_n = 3$ with prob = 0.1
- <u>Stationary ?</u>
 - No
- Wide sense stationary ?
 - Mean = 0 for all n
 - $C_X(t,\tau) = 0$ for $\tau > 0$
 - $C_X(t,\tau) = 1$ for $\tau = 0$
 - Yes, it's wide sense stationary

Wide Sense Stationary

Theorem: For a wide sense stationary process X(t), $\begin{array}{l} R_X(0) \ge 0\\ R_X(\tau) = R_X(-\tau)\\ |R_X(\tau)| \le R_X(0) \qquad -R_X(0) \le R_X(\tau) \le R_X(0) \end{array}$

• The $R_X(\tau)$ provides the interdependence information of two random variables obtained from X(t) at times τ seconds apart

http://cc.ee.ntu.edu.tw/~wujsh/PC%20Chapter1.ppt

Wide Sense Stationary

Theorem: For a wide sense stationary sequence X_n , $R_X[0] \ge 0$ $R_X[k] = R_X[-\tau]$ $|R_X[k]| \le R_X[0]$

Average Power

- From Ohm's Law : V = IR
- For v(t), i(t), and R
 - The instantaneous power dissipated P(t)

 $P(t) = v^2(t)/R = i^2(t)R$

- For $R = 1 \Omega$, $P(t) = v^2(t) = i^2(t)$
- For a voltage or current is a sample function of random process, x(t,s)
 - → P across 1 Ω resistor = $x^2(t,s)$

Average Power

- **Define** x²(t,s)
 - as the instantaneous power of x(t,s)
- For a X(t),
 - X²(t) is the instantaneous of power X(t)

```
Definition:
```

The **average power** of a wide sense stationary process X(t) is $R_X(0) = E[X^2(t)]$